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The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering
novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases
trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a
systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the
non-Abelian gauge potential and explore its various important experimental consequences. Numerical
calculations on lattice scales are performed to compare with the results achieved by the fermionic effective
field theory. Several possible experimental detection methods of topological quantum phase transition are
proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be
measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally
generating various non-Abelian gauges corresponding to the same set of Wilson loops.

A
wide range of atomic physics and quantum optics technology provide unprecedented manipulation of a

variety of intriguing quantum phenomena. Recently, based on the Berry phase1 and its non-Abelian
generalization2, Spielman’s group in NIST has successfully generated a synthetic external Abelian or

non-Abelian gauge potential coupled to neutral atoms. The realization of non-Abelian gauge potentials in
quantum gases opened a new avenue in cold atom physics3–10. It may be used to simulate various kinds of
relativistic quantum field theories11,12, topological insulators13,14, graphene15,16, and it may also provide new
experimental systems in finding Majorana fermions17,18.

Recently, there have been some experimental19,20 and theoretical activities21–23,42,43 in manipulating and con-
trolling of ultracold atoms in a honeycomb optical lattice. Bermudez et al.24 studied Fermi gases trapped in a
honeycomb optical lattice in the presence of a synthetic SU(2) gauge potential. They discovered that as one tunes
the parameters of the non-Abelian gauge potential, the system undergoes a topological quantum phase transition
(TQPT) from the ND 5 8 massless Dirac zero modes phase to a ND 5 4 phase. However, despite this qualitative
picture, there remain many important open problems. In this work, we address these important problems. We
first determine the phase boundary in the two parameters of the non-Abelian gauge potential, and provide a
physical picture to classify the two different topological phases and the TQPT from the magnetic space group
(MSG) symmetry21,22,25,42,43. Then we develop a systematic fermionic effective field theory (EFT) to describe such a
TQPT and explore its various important experimental consequences. We obtain the critical exponents at zero
temperature which are contrasted with a direct numerical calculation on a lattice scale. We derive the scaling
functions for the single particle Green function, density of states, dynamic compressibility, uniform compressi-
bility, specific heat and Wilson ratio. A weak short-ranged atom-atom interaction is irrelevant near the TQPT, but
the disorders in generating the non-Abelian gauge fields are relevant near the TQPT. We especially distinguish
gauge invariant physical quantities from non-gauge invariant ones. When discussing various potential experi-
mental detections of the topological quantum phase transition, we explore the possibilities to choose different
gauges to measure both gauge invariant and non-gauge invariant physical quantities. We stress the crucial
differences between the TQPT discussed in this work and some previously known TQPTs.
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Results
Wilson loops, topological phases and phase boundary. The tight-
binding Hamiltonian for Fermi gases trapped in a two-dimensional
(2D) honeycomb optical lattice in the presence of a non-Abelian
gauge potential [Fig. 1(a)] is:

H0~{t
X

i,jh i
c{A isð ÞUss’

ij cB js’ð Þzh:c:, ð1Þ

where t is the hopping amplitude, Æi, jæ means the nearest neighbors,
and c{A isð Þ,c{B isð Þ cA isð Þ,cB isð Þð Þ create (annihilate) a fermion at site
ri of A- and B-sublattice with spin s. The unitary operator U is related
to the non-Abelian gauge potentials A by the Schwinger line integral

along the hopping pathP exp i
e
h

ð
A:dl

� �
. For simplicity, we choose

a lattice translational invariant gauge [Fig. 1(a)] where the Uij 5 Ui2j

; Ud, d 5 1, 2, 3. In the momentum space, the Eq. (1) can be written24

as H~
P

~k Y
{
a
~k
� �

Hab
~k
� �

Yb
~k
� �

where a, b stands for the two

sublattices A, B and also the the two spin indices s. In the specific
gauge in Fig. 1(a), U1~eiasx , U2 5 1 and U3~eibsy , where the sx and
sy are Pauli matrices in the spin-components (The more general case
U1~eiasx , U2~eicsz , U3~eibsy can be similarly discussed). The
gauge invariant Wilson loop24 around an elementary hexagon is
W(a, b) 5 2 2 4 sin2 a sin2 b which stands for the non-Abelian
flux through the hexagon. However, in contrast to the Abelian gauge
case on a lattice21,22,42,43, the W(a, b) is not enough to characterize the
gauge invariant properties of the system. One need one of the three
Wilson loops W1,2,3 around the 3 orientations of two adjacent
hexagons to achieve the goal. In the gauge in Fig. 1(a), W1(a, b) 5

2 2 4 sin2 2a sin2 b, W2(a, b) 5 2 2 sin2 2a sin2 2b, and W3(a, b) 5 2
2 4 sin2 a sin2 2b. The gauge invariant phase boundary in terms of W
and W1 is shown in Fig. 4(a). The W 5 62 and jWj, 2 correspond
to Abelian regimes and non-Abelian regimes respectively. Only in
the Abelian case W1 5 W2 5 W3 5 2. The fact that W1 ? W2 or W1

? W3 in the non-abelian case shows that the 2p/3 rotation symmetry
around a lattice point (or p/3 symmetry around the center of the
hexagon) is generally broken, even the translational symmetry is
preserved by the non-Abelian gauge field. It is easy to see that the
a is gauge equivalent to p 6 a and b is gauge equivalent to p 6 b, so
we can restrict a and b in the region [0, p]. It is important to stress
that in principle, the cold atom experiments3–10 can generate various
gauges corresponding to the same W and W1,2,3, so the gauge
parameters a and b are experimentally adjustable. This fact will be
important in discussing experimental detections of the TQPT.

The spectrum of H consists of four bands given by

E1+ kð Þ~+t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bk{2

ffiffiffiffiffi
dk

pq
, E2+ kð Þ~+t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bkz2

ffiffiffiffiffi
dk

pq
, ð2Þ

where the bk 5 3 1 2 cos a cos (k1a) 1 2 cos b cos [(k1 1 k2)a] 1 2
cos a cos b cos (k2a) and dk 5 (1 2 cos2 a cos2 b) sin2 (k2a) 1 sin2 a
sin2 (k1a) 2 2 sin2 a cos b sin (k1a) sin (k2a) 1 sin2 b sin2 [(k1 1 k2)a]
1 2 cos a sin2 b sin [(k1 1 k2)a] sin k2a with k1~3kx=2{

ffiffiffi
3
p

ky

�
2

and k2~
ffiffiffi
3
p

ky . In the following, we focus on the most interesting
half-filling case. At the half filling, the spectrum is particle-hole sym-
metric, the E1+ E2+ð Þ describe the two low (high) energy bands. By
solving E1{ kð Þ~0 for k which can be expressed as the roots of a
quartic equation, we obtain all the zero modes in analytic forms. For
simplicity, we only show the number of the zero modes ND in
Fig. 1(b) for general a, b. Especially, the phase boundary in
Fig. 1(b) separating ND 5 8 from the ND 5 4 zero modes is deter-
mined by setting the discriminant of the quartic equation to be zero.
As the gauge parameters a and b change from 0 to p, the system
undergoes a topological quantum phase transition (TQPT) from the
ND 5 8 massless Dirac zero modes phase in the yellow regime to a ND

5 4 phase in the green regime shown in the Fig. 1(b). Along the
dashed line in the Fig. 1(b), the TQPT at (a 5 p/2, bc 5 p/3) is
induced by changes in Fermi-surface topologies shown in the
Fig. 2(a)–(d).

Classification of the topological quantum phase transition by the
magnetic space group. Time-reversal symmetry indicates that the
only two Abelian points are W 5 62 which correspond to no flux
and the p flux respectively. For an Abelian flux w 5 1/q, the MSG
dictates there are at least q minima in the energy bands21,22,42,43. If
there exists Dirac points (zero modes), the MSG dictates there are at
least q Dirac points in the energy bands. All the low energy modes
near the q Dirac points construct a q dimensional representation the
of MSG. Due to the time-reversal symmetry, the Dirac points always
appear in pairs. When counting the two spin components, each Dirac
zero mode was doubly degenerate, so they are counted as ND 5 4q
Dirac points. W 5 22 corresponds to the q 5 2 case where there are
ND 5 8 Dirac zero modes. It is the p flux Abelian point locating at the
center in the Fig. 1(b). W 5 2 case corresponds to the q 5 1 case
where there are ND 5 4 Dirac zero modes. It is just the graphene
case15 running along the 4 edges of the square in the Fig. 1(b).
Obviously, the W 5 62 have different Fermi surface topologies, so
there must be a TQPT separating the two extremes. It is the
non-Abelian gauge field which tunes between the two Abelian
points landing in the two different topological phases, induces the

Figure 1 | Lattice geometry and phase diagram. (a) The honeycomb lattice consists of sublattice A (red dots) and sublattice B (blue dots). The up

and down arrows represent the spin degrees of freedom. a is the lattice constant. The non-Abelian gauge potentials U1,2,3 with directions are displayed on

the three links inside the unit cell. (b) The phase diagram of our system as a function of gauge parameters a and b. The yellow (green) region has ND 5 8

(ND 5 4) Dirac points shown in the insets. The center C point is the p flux Abelian point. The 4 edges of the square belong to the gauge equivalent

trivial Abelian point. We investigate the topological quantum phase transition from C point to D point along the dashed line.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2119 | DOI: 10.1038/srep02119 2



changes in Fermi-surface topologies and drives the TQPT. The
different phases across the TQPT are characterized by different
topologies of Fermi surface26 instead of being classified by different
symmetries, so they are beyond Landau’s paradigm.

The low energy effective field theory. Based on the physical pictures
shown in the Fig. 2, we will derive the effective action near the TQCP
at (a 5 p/2, b 5 p/3) by the following procedures: (1) Perform an
expansion around the critical point b 5 bc 5 p/3 and the merging

point P~
p

2
, {

p

2
ffiffiffi
3
p

� �
(or equivalently Q 5 2P): H kx, ky, D

� 	
~

H0
PzHx

PqxzHy
Pqyz

1
2

Hxx
P q2

xzHD
P Dz � � � where the k 5 P 1 q,

qj j=1=a and the D / bc 2 b, Dj j=bc. (2) Diagonalize the H0
P by

the unitary matrix SP: S{P H0
P SP~diag {2t, 2t, 0, 0ð Þ. (3) Perform a

counter-clockwise rotation Rp/6 by p/6 around the point P to align
the qx along the colliding direction. (4) Separate Hamiltonian into 2
3 2 blocks in terms of high (low) energy component wH (wL), then
adiabatically eliminate the high-energy bands around 22t and 2t to
obtain the effective low-energy two bands Hamiltonian around q 5 0
acting on the low energy component wL. Finally, we obtain the
effective Hamiltonian density in term of effective field wL (See
Method section)

Hef f qð Þ~w{
L qð Þ v qysxz

2q2
x

2m
zD

� �
sy


 �
wL qð Þ, ð3Þ

where v~
3ta
2

, m~
2

3ta2
, D~

ffiffiffi
3
p

t
2

p

3
{b

� �
and the effective field wL

5 [y1, y2]T is related to the original lattice fields by Eq. (14). When
D , 0 (D . 0), it is in the ND 5 8 (ND 5 4) phase. We obtain the

energy spectrum E+ qð Þ~+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2q2
x

�
2mzD

� 	2
zv2 2q2

y

q
is quartic

(diffusive) in the colliding direction (qx direction), but linear

(ballistic) in the perpendicular direction (qy direction) (Similar
anisotropy were observed in the collision between two U(1) gauge
vortices of two opposite winding numbers m 5 61 in an expanding
universe, see27). Note that the Eq. (3) and Eq. (14) were derived at a
fixed gauge, namely along the dashed line in Fig. 1(b), so the position
of the merging point P (or Q 5 2P) will change under a gauge
transformation. This fact will play very important roles in the
experimental detections of the TQPT and will be discussed in
details in the last section.

Applying the same procedures to the four K1,2,3,4 points in the
Fig. 2, we obtain the usual Dirac-type Hamiltonian for these points.
These four Dirac points stay non-critical through the TQPT, so they
just contribute to a smooth background across the TQPT. In the
following, we subtract the trivial contributions from the ND 5 4
‘‘spectator’’ fermions from all the physical quantities. All the physical
quantities should be multiplied by a factor of 2 to take into account
the two merging points P and Q 5 2P.

The zero temperature critical exponents. Now we investigate if
there are any singular behaviors of the ground state energy across
the TQPT. So we calculate the gauge invariant ground state energy

density E Dð Þ~ 1
4p2

ð
d2qE{ qð Þ and extract its non-analytic part. Its

2nd derivative with respect to D around the critical point is (See
Method section)

E’’ Dð Þ*
{

1
p

ffiffiffiffiffiffiffi
2m
p

2v

ffiffiffiffi
D
p

, for Dw0,ffiffiffi
2
p

3p2
K

1
2

� � ffiffiffiffiffiffiffi
2m
p

2v
Dffiffiffiffi
L
p , for Dv0,

8>>><
>>>:

ð4Þ

where K(1/2) < 1.85, K(z) is the complete elliptic integral of the first
kind, and L is an ultraviolet energy cutoff in the integral. We define
E’’ Dð Þ{E’’ D~0ð Þ! Dj j{u, where n is the critical exponent

Figure 2 | Topologies of different Fermi surface. The different Fermi surface topologies of the E1{ in the 1st Brillouin zone along the dashed line in

the Fig. 1(b). (a) The p flux Abelian point a 5 p/2, b 5 p/2 inside the ND 5 8 phase, (b) The a 5 p/2, b 5 2p/5 inside the ND 5 8 phase, (c) The TQPT

at a 5 p/2, bc 5 p/3. The two emerging points are located at P~
p

2
, {

p

2
ffiffiffi
3
p

� �
and its time-reversal partner Q 5 2P. The four Dirac points are

locatedvat K1~
5p
12

,
p

4
ffiffiffi
3
p

� �
~{K3, K2~ {

p

12
,

ffiffiffi
3
p

p

4

� �
~{K4. (d) The a 5 p/2, b 5 p/4 inside the ND 5 4 phase.
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characterizing the TQPT. Eq. (4) shows that the E’’ bð Þ exhibits a
cusplike behavior with the critical exponent n1 5 21/2 and n2 5

21. Obviously E’’’ Dð Þ diverges like D21/2 as the D R 01, but
approaches a constant as the D R 02. The TQPT is 3rd order
continuous quantum phase transition. In contrast, most conven-
tional continuous quantum phase transitions are 2nd order.

We numerically calculate the ground-state energy density on the

lattice scale Elatt bð Þ~ 1
4p2

ð
BZ

d2k E1{ kð ÞzE2{ kð Þ½ � and illustrate its

1st, 2nd and 3rd derivatives in Fig. 3. Indeed, the E’’ bð Þ exhibits a
cusplike behavior near bc 5 p/3 in Fig. 3(c). Numerically, we obtain
the critical exponent n1 5 21.0 and n2 5 20.5 consistent with our
analytical results Eq. (4) (Note that D / bc 2 b). This fact confirms
that the effective Hamiltonian Eq. (3) indeed captures the low energy
fluctuations across the TQPT.

Scaling functions at finite temperature. At finite temperature T, the
free energy density F is

F~{2kBT
ð

d2q

2pð Þ2
ln 1ze{Ez =kB T
� �

zE Dð Þ, ð5Þ

where the E Dð Þ is the ground state energy density whose singular
behaviors were extracted above. It turns out all the singular behaviors
are encoded in E Dð Þ. There is no more singularities at any finite
temperature, so the TQPT becomes a crossover at any finite T.
Following Ref. 28,29, we can sketch the finite temperature phase
diagram in the Fig. 4(b). We can write down the scaling forms of
the retarded single particle Green function, the dynamical
compressibility and the specific heat

GR qx, qy, v
� 	

~
kBT

Ai
v

kBT
,

qxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT
p ,

vqy

kBT
,

Dj j
kBT

� �
,

kR qx, qy, v
� 	

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT
p

v
Wi

v

kBT
,

qxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT
p ,

vqy

kBT
,

Dj j
kBT

� �
,

Cv~
kB

ffiffiffiffiffiffiffi
2m
p

2v
kBTð Þ3=2Yi

Dj j
kBT

� �
,

ð6Þ

where the subscript i 5 1 (i 5 2) stands for the ND 5 4 (ND 5 8)
phase. Note the anisotropic scalings in qx and qy.

Although the single fermion Green function GR is gauge depend-
ent, the single particle DOS r vð Þ~{2

Ð
dq=GR q, vð Þ T~0j ~

Figure 3 | Ground-state energy density. (a) The ground-state energy density on the lattice scale Elatt bð Þ as a function of b. (b) The first-order

derivative of the ground-state energy density on the lattice scale E latt bð Þ with respect to b. (c) The second-order derivative of the ground-state energy

density on the lattice scale E latt bð Þ with respect to b. It shows a cusp when b 5 p/3, 2p/3. (d) The third-order derivative of E latt bð Þ with respect to b. It

shows discontinuity when b 5 p/3, 2p/3, so the system undergoes a third order topological quantum phase transition.

Figure 4 | Finite-T Phase diagram. (a) The gauge-invariant phase diagram in terms of the Wilson loops W and W1. The yellow (green) regime is ND 5 8

(ND 5 4). The dashed line corresponds to the one in Fig. 1(b). (b) Finite-T Phase diagram of the topological quantum phase transition as a

function of the flux D and the temperature T. There is a topological quantum phase transition at T 5 0, D 5 0. The two dashed lines stand for the

crossovers at T , |D | .
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ffiffiffiffiffiffiffiffiffiffiffiffi
2m v
p

v
~Ai

v

Dj j

� �
is gauge-invariant. The dynamic compressibility

and the specific heat are gauge invariant. The uniform compressi-

bility is given by ku~kR q?0, v~0ð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT
p

v
Vi

Dj j
kBT

� �
. We

have achieved the analytic expressions for ku(T) and Cv (See method
section). Here, we only list their values in the three regimes shown in
the Fig. 4(b). For the uniform compressibility, we have

ku~

0:22|

ffiffiffiffiffiffiffi
2m
p

2v
kBTffiffiffiffiffiffiffiffi
{D
p , for D={kBT,

0:14|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT
p

2v
, for Dj j=kBT,

0:22|

ffiffiffiffiffiffiffiffiffiffi
2mD
p

2v
e{ D

kB T , for D?kBT:

8>>>>>>><
>>>>>>>:

ð7Þ

For the specific heat, we have

CV~

1:72|
kB

ffiffiffiffiffiffiffi
2m
p

2v
kBTð Þ2ffiffiffiffiffiffiffiffi
{D
p , for D={kBT,

0:76|
kB

ffiffiffiffiffiffiffi
2m
p

2v
kBTð Þ3=2, for Dj j=kBT,

0:22|
kB

ffiffiffiffiffiffiffi
2m
p

2v
D5=2

kBT
e{ D

kBT , for D?kBT:

8>>>>>>>><
>>>>>>>>:

ð8Þ

From Eq. (7) and Eq. (8), we can form the Wilson ratio between

the compressibility and the specific heat RW
Dj j

kBT

� �
~k2

BTku
�

Cv~

Vi
Dj j

kBT

� �.
Yi

Dj j
kBT

� �
whose values in the three regimes in the

Fig. 4(b) are

RW~

0:12, for D={kBT,

0:18, for Dj j=kBT,

kBT
D

� �2

, for D?kBT:

8>>><
>>>:

ð9Þ

Effects of interactions and disorders. Now we consider the effects of
a Hubbard-like short-range interactions HU ¼ Uð

P
i[A ni:ni;þP

i[B ni:ni;Þ on the TQPT in Fig. 4(b). It is easy to see HU is
invariant under the local SUð2Þ gauge transformation, so the
Wilson loops W and W1;2;3 can still be used to characterize the
gauge invariant properties of the interacting system. In this work,
we only study the effects of a weak interaction. The low energy form
of the HU was derived in the Method section. Following the standard
renormalization group (RG) procedures in30,31 (See Method section),
we find the scaling dimension of U is 21/2 , 0, so it is irrelevant near
the TQPT at P 5 2Q. It was known30,31 that the U, with the scaling
dimension 21 , 0, is also irrelevant near the Dirac points at K1,2,3,4.
So all the leading scaling behaviors will not be changed by the weak
short-range interaction. For the quenched disorders Dg in the gauge
parameters a, b, following the RG procedures in30,31, we find its
scaling dimension is 1/2 . 0, so they are relevant to the TQPT at
P 5 2Q. It was known30,31 that the Dg, with the scaling dimension 0,
is marginal near the Dirac points at K1,2,3,4. This put some constraints
on the stabilities of the laser beams generating the synthetic gauge
field. It would be interesting to look at the interplays between the
strong repulsive or negative U and the non-Abelian gauge potentials
near the TQPT.

Gauge invariance and gauge choices in experimental detections of
the topological quantum phase transition. Due to absence of
symmetry breaking across a TQPT, it remains experimentally
challenging to detect a TQPT. Very recently, the Esslinger’s group

in ETH20 has manipulated two time-reversal related Dirac points23 in
the band structure of the ultracold Fermi gas of 40K atoms by tuning
the hopping anisotropies in a honeycomb optical lattice and
identified the two Dirac zero modes via the momentum resolved
interband transitions (MRIT). As to be stressed in the disscussion
section, in the present synthetic gauge potential problem, the
positions of the Dirac points and the two merging points P 5 2Q
shown in Fig. 2 are gauge-dependent, so can be shifted by a gauge
transformation. We expect that by tuning the orientations and
intensity profiles of the incident laser beams, various gauges
corresponding to the same Wilson loops W and W1,2,3 can be
experimentally generated. So the MRIT measurement can still be
used to detect the positions of the two merging points, the Dirac
points and the TQPT at a fixed gauge. Then it can be repeatedly
performed at various other experimentally chosen gauges to
monitor the changes of these positions as the gauge changes.
However, the number of Dirac points ND in the two different
topological phases and the density of states r(v) are gauge
invariant. In principle, the number of Dirac points ND can be
measured by Hall conductivities. The r(v) can be measured by the
modified RF-spectroscopy32,33. There are previous experimental
measurements on the specific heat of a strongly interacting Fermi
gas34. Very recently, Ku et al.35 observed the superfluid phase
transition in a strongly interacting 6Li Fermi gas by presenting
precise measurements of the compressibility ku and the heat
capacity Cv. It was demonstrated that the presence of the optical
lattice does not present technical difficulties in the compressibility
measurements36,37, therefore these measurements34,35 can be used to
detect the uniform compressibility Eq. (7), the specific heat Eq. (8)
and the Wilson ratio in Eq. (9). The various kinds of light and atom
scattering methods discussed in29,38 is particularly suitable to detect
the dynamic compressibility in Eq. (6).

Discussion
In this work, we investigate the topological quantum phase transition
(TQPT) of fermions hopping on a honeycomb lattice in the presence
of a synthetic non-Abelian gauge potential. The two Abelian phases
W 5 62 are connected by the TQPT tuned by the non-abelian gauge
parameters. We especially distinguish between gauge invariant and
gauge dependent quantities across the TQPT. In fact, the ‘‘Abelian
path’’ discussed in24 is just equivalent to the Abelian point W 5 2 in
Fig. 1(b). The positions of the Dirac cones along the ‘‘Abelian path’’
shown in Fig. 7 in Ref. 24 are gauge dependent quantities and can be
shifted by gauge transformations, but the ground state energy density
E Dð Þ is gauge invariant. In the TQPT in an anisotropic honeycomb
lattice studied in20,23, there is no synthetic gauge potential, the col-
lision is between two time-reversal related Dirac points, so the mer-
ging points can only be located at half of a reciprocal lattice. Here, the
collision shown in Fig. 2 is not between two time-reversal related
Dirac points. The locations of the two merging points P 5 2Q and
the four Dirac points K1 5 2K3, K2 5 2K4 are gauge dependent. But
the total number of Dirac points ND, the colliding process and the
TQPT shown in Fig. 2 are gauge invariant. In the 3 dimensional
TQPT driven by a Zeeman field discussed in26, there is no synthetic
gauge potential either, the time-reversal symmetry is broken by the
Zeeman field, the collision is between one left handed and one right-
handed Weyl fermions at 3d. At the BCS mean field level, the critical
effective field theory is a 4-component Dirac fermion at 3d which is
different from Eq. (3). So it is a different class of TQPT than that
discussed in this paper. As stressed in this work, in principle, the cold
atom experiments3–10 can generate various gauges corresponding to
the same W and W1,2,3, so both gauge invariant and gauge dependent
quantities can be detected in such experiments. In sharp contrast,
only gauge-invariant quantities can be detected in condensed matter
experiments (For the discussions on gauge invariant Green functions
in high temperature superconductors, see39–41,44). Indeed, the cold

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2119 | DOI: 10.1038/srep02119 5



atom experiments of generating synthetic gauge potentials on an
optical lattice can lead to new types of TQPT and also offer new
opportunities to explore both gauge invariant and non-gauge invari-
ant quantities through the TQPT.

Methods
Derivation of low-energy effective Hamiltonian. We first find the energy bands by
diagonalizing Hamiltonian matrix [Eq. (1)] at the critical point bc 5 p/3 and the
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Now we perform an expansion of the Hamiltonian around the bc and also around the
merging point P by writing k 5 P 1 q9 with q’j j=1=a. Furthermore, we make a p/6

counter-clockwise rotation
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. Then, we

separate the 4 3 4 Hamiltonian into 2 3 2 blocks as ~H kð Þ~S{PH kð ÞSP~

HH HC

H{
C HL

� �
and W kð Þ~S{PY kð Þ~ wH wLð Þ, where the upper left diagonal block HH

is the high-energy component, the lower right diagonal block HL is the low-energy
component, the off-diagonal blocks HC is the coupling between the two components
and W is the corresponding field operator. In the path integral, the quantum partition
function is

Z~Z{1
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In order to obtain low-energy EFT, we integrate out high-energy component wH
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where Lef f ~w{
L v{HL{H{

C v{HHð Þ{1HC

h i
wL . Since vj j=t and HH / t, we

can expand (v 2 HH)21 in t21 and keep only terms up to t21. After Legendre
transform, we obtain the effective two bands Hamiltonian as
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wL. After keeping only lowest order derivative terms, we

obtain Eq. (3)
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w2)T and original lattice fields is give by the unitary matrix SP as
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where q 5 Rp/6(k 2 P).

Zero temperature critical exponents. The gauge invariant ground state energy

density E Dð Þ of Eq. (3) can be written as: E Dð Þ~ 1
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, where Lx and Ly are ultraviolet moment cutoff for qx and qy respectively.
To evaluate such a double integral, we first integrate with respect to qy variable,ðLy
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0 feature, singular behaviors are only hidden in f2. In the next step, we need to handle

the following integration: I2 Dð Þ~
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Let us take derivative before integration, since we have the following simple

relation
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for the D , 0 case, we obtain
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Combining Eq. (15) and Eq. (16), we have following result for h2I2/hD2 around the
critical point D 5 0,
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Notice that f1 and f2 also have linear contributions, carefully adding these contribu-
tions we arrive at the final expression Eq. (4)
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where K(z) is the complete elliptic integral of the first kind, K(1/2) < 1.85 and
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is an ultraviolet energy cutoff.

Finite temperature effect. From Eq. (5) we can directly obtain specific heat as
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From Eq. (3), we can get the fermion Green function
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where Ps(q) are the project operators for the s 5 6 band. The dynamical
compressibility can be expressed as
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Working out the Matsubara frequency summation and trace, we obtain
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where nF is Fermi distribution function and Mss9 (p, q) is
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Explicit evaluations of Eq. (19) and analytical continuations in Eq. (20), (22) lead to
the explicit forms of the scaling functions in the retarded single particle Green
function, the dynamical compressibility and the specific heat in Eq. (6). The
analytic expressions for the scaling function Yi in Cv and Vi in ku(T) are found
to be:
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where K(z) denote the complete elliptic integrals of the first kind. Their values in the
three regimes shown in the Fig. 4(b) are listed in Eq. (7), (8).

Renormalization group analysis of short-range interaction and quenched
disorders. We can write Eq. (3) in the action form:
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S0½wL� ¼
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It is easy to see the canonical dimension in (qx, qy, v) space is [wL(qx, qy, v)] 5 27/4.
Fourier transforming to (x, y, t) space leads to [wL(x, y, t)] 5 3/4.

Following the same procedures as in the derivation of low-energy effective
Hamiltonian, expanding the Hubbard interaction HU around the merging point
P ¼ �Q and projecting into the low energy component wL , we obtain the low energy

form of the Hubbard interaction: SU ½wL� ¼ U
Ð

dxdydt½w{
Lðx; y; tÞwLðx; y; tÞ�2. It is

easy to see the canonical dimension of the short range interaction [U] 5 21/2 , 0, so
it is irrelevant near the TQPT. This is contrasted with the canonical dimension [U]D

5 21 , 0 of the short range interaction near the 4 Dirac points K1,2,3,4
30,31.

Now we consider quenched disorders in the gauge parameter b. As indicated in Eq.
(3), at a fixed gauge along the dashed line in Fig. 1(b), the tuning parameterD, p/3 2

b, so the randomness in the gauge parameter b will lead to the randomness in D.
Similarly, the randomness in the gauge parameters a and c will also lead to random
distributions in D in other gauges. We assume all the quenched disorder satisfies a
Gaussian distribution with zero mean and variance Dg: hgðrÞgðr0Þi ¼ Dg dðr� r0Þ
where g stands for the gauge parameters a, b, c. Averaging over the disorders lead to:

Sg ½wL� ¼ Dg
Ð

dxdydtdt0 ½w{
Lðx; y; tÞsmwLðx; y; tÞ�2½w{

Lðx; y; t0ÞsmwLðx; y; t0Þ�2 with

m ¼ x; y; z. By using the canonical dimension [wL(x, y, t)] 5 3/4, one can see the
canonical dimension of the short range disorder [Dg] 5 1/2 . 0, so it is relevant near
the TQPT. This is contacted with the canonical dimension [Dg]D 5 0 of the short
range disorders near the 4 Dirac points30,31 K1,2,3,4 which is marginal. A RG analysis at
one loop is needed to determine its fate30,31.

1. Berry, M. V. Quantal Phase Factors Accompanying Adiabatic Changes. Proc. R.
Soc. Lond. A 392, 45 (1984).

2. Wilczek, F. & Zee, A. Appearance of Gauge Structure in Simple Dynamical
Systems. Phys. Rev. Lett. 52, 2111 (1984).

3. Lin, Y. J. et al. Bose-Einstein Condensate in a Uniform Light-Induced Vector
Potential. Phys. Rev. Lett. 102, 130401 (2009).
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6. Lin, Y. J., Jiménez-Garcı́a, K. & Spielman, I. B. Spin-orbit-coupled Bose-Einstein
condensates. Nature 471, 83 (2011).

7. Sau, J. D., Sensarma, R., Powell, S., Spielman, I. B. & Das Sarma, S. Chiral Rashba
spin textures in ultracold Fermi gases. Phys. Rev. B 83, 140510 (2011).
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